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Abstract

A general method is presented for solving the plane elasticity problem of _nite plates with multiple
microcracks[ The method directly accounts for the interactions between di}erent microcracks and the e}ect
of outer boundary of a _nite plate[ Analysis is based on a superposition scheme and series expansions of the
complex potentials[ By using the traction!free conditions on each crack surface and resultant forces relations
along outer boundary\ a set of governing equations is formulated[ The governing equations are solved
numerically on the basis of a boundary collocation procedure[ The e}ective Young|s moduli for randomly
oriented cracks and parallel cracks are evaluated for rectangular plates with microcracks[ The numerical
results are compared with those from various micromechanics models and experimental data[ These results
show that the present method provides a direct and e.cient approach to deal with _nite solids containing
multiple microcracks[ Þ 0888 Elsevier Science Ltd[ All rights reserved[

0[ Introduction

Generally brittle materials contain large numbers of microcracks[ Due to the presence of these
microcracks\ the materials become weaker and less sti}[ This is of considerable interest for
researchers in the _elds of solid mechanics\ geophysics and materials[ Comprehensive reviews on
this subject are given by Kachanov "0881\ 0883#\ Nemat!Nasser and Hori "0882# and Krajcinovic
"0885#[

The e}ective moduli of microcracked solids have been attracting intensive attention in the past
two decades[ There are several micromechanics models to estimate the e}ective moduli of solids
containing microcracks\ such as the dilute or non!interacting solution\ the self!consistent method
"see e[g[ Budiansky and O|Connell\ 0865#\ the generalized self!consistent model "see e[g[ Christensen
and Lo\ 0868#\ and the di}erential scheme "see e[g[ Hashin\ 0877#[ In these models\ microcrack
interactions are entirely neglected or indirectly accounted[ These methods are only valid for low
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or moderate crack density\ since they do not depend on locations of microcracks and they do not
deal with the damage and fracture process of brittle materials[ The MoriÐTanaka method "Mori
and Tanaka\ 0862# is an e}ective _eld scheme that was applied to a 1!D cracked solid by Benveniste
"0875#[ The analysis is reduced to consideration of one isolated crack placed into the undamaged
matrix but subjected to a certain e}ective _eld\ which\ a priori\ does not necessarily coincide with
the remotely applied one[ As crack density increases and microcrack spacings are closer\ strong
interactions between microcracks occur and the mutual positions of cracks become important[
Kachanov "0876# proposed a pseudotraction method to solve multiple crack problems which took
into account the strong interaction between microcracks[ This method is simple and can be used
to higher microcrack concentrations[ But Kachanov|s interaction scheme corresponds to the case
in which the unknown crack!line tractions are approximated only by their average[ Huang et al[
"0885# used a hybrid BEM method\ in conjunction with a unit cell model\ to calculate the e}ective
moduli of microcracked solids[ A unit cell\ which can be considered as a representative block in
the solid\ is assumed to be periodic in the solid so as to account for interactions between cracks
inside and outside the cell[ The e}ective moduli based on this numerical method for randomly
distributed cracks and parallel cracks were compared with those from various micromechanics
models[ It is noted that the foregoing methods are only used in in_nite media[ However\ it is
di.cult to verify these models by experimental data since specimens are _nite[

Vavakin and Salganik "0864# conducted uniaxial tension tests on a thin elastic sheet containing
an array of randomly oriented slits[ Carvalho and Labuz "0885# presented the results of experiments
designed to measure e}ective elastic properties of arti_cially cracked and porous aluminum plates
under plane stress conditions[ Chau and Wong "0886# compared the predicted e}ective moduli by
the self!consistent and non!interacting methods to experimental observations on natural rocks
containing microcracks and arti_cial rocks containing inserted microcracks[ Their results indicate
that the non!interacting theory and self!consistent method are only applicable if the crack density
is smaller than 9[1[ A better damage model is needed for solids with crack density larger than 9[1[

Fond and Berthaud "0884# used the pseudotractions technique to deal with interactions between
cracks and circular cavities in two!dimensional _nite or in_nite media[ The e}ects of interactions
and the presence of boundaries are illustrated by some examples considering the global sti}ness of
cracked media under tensile loading[ Jiang et al[ "0885# considered the problem of interacting
microÐcracks around an inclusion in a system involving complex _nite geometries and general
boundary conditions[ A hybrid micro!macro BEM formulation capable of handling interactions
among the inclusion\ arbitrarily distributed cracks and the boundaries of the system was developed[
Renaud et al[ "0885# investigated the impact of interactions on the e}ective sti}ness of microcracked
media by means of an indirect boundary element method\ namely the displacement discontinuity
method[ For tensile loadings\ and when only crackÐcrack interactions were considered\ their
numerical results showed good agreement with the non!interacting crack approximation[ When
microcrack!boundary interactions were also taken into account\ the results agreed rather well with
the di}erential scheme[ Krajcinovic "0885\ 0886# used percolation models to estimate the e}ective
material properties in the limit of large defect concentration[

The literature related to the variational bounds of the e}ective properties is abundant[ The best
known and most commonly used inequality has been suggested by Hashin and Shtrikman "0852#
and the whole _eld has been reviewed by several authors "see e[g[ Willis\ 0870^ Hashin\ 0872^
Torquato\ 0881#[ The bounds on the e}ective elastic properties of materials with a heterogeneous
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microstructure can be determined from the corresponding expressions for the e}ective conductivity
"see e[g[ Torquato\ 0881^ Milton\ 0873^ Gibiansky and Torquato\ 0882#[ Recently\ Gibiansky and
Torquato "0885# found the bounds on the e}ective elastic moduli of cracked materials in terms of
the e}ective conductivity of such media that were valid for arbitrary shapes and spatial distribution
of the cracks[ These results are very valuable for the experimental determination of the e}ective
elastic moduli[

Recently\ statistical models have been emerging which attempts to grasp the intrinsic randomness
of material microstructure and the ensuing unpredictability of damage processes[ Lattice models
and similar models are used to study the random fracture and damage problem "see e[g[ Skjeltorp
and Meakin\ 0877^ Herrmann and Roux\ 0889^ Curtin and Scher\ 0889^ Ray and Chakrabarti\
0874^ Harlow and Phoenix\ 0880^ Ostoja!Starzewski and Lee\ 0885^ Schlangen and Garboczi\ 0885^
Chiaia et al[\ 0886#[ Mazars "0872#\ and Breysse and Schmitt "0880# formulated rather elaborate
statistical models for microcracking in concrete[ Bai et al[ "0880# presented a statistical model to
study statistical evolution of microcracks[ Ju and Chen "0883# presented a two!dimensional
statistical micromechanical theory for microcrack!weakened brittle solids based on the concepts
of ensemble!average and microcrack interaction[ Diao "0885# established the new statistical theory
of inhomogeneous damage by the non!equilibrium statistical method which can universally describe
the evolution of the damage parameter with time due to the initiation and growth of damaged
regions in the material[

The purpose of the present study is to give an accurate and e.cient method for solving the plane
elasticity problem of _nite solids with multiple microcracks[ The problem of a homogeneous _nite
plate with microcracks can be decomposed into two subproblems[ The _rst is the problem of the
microcrack interactions within an imaginary _nite region in an in_nite plate and no stress is applied
at in_nity[ The con_gurations of microcracks and the opening displacement of each microcrack
inside the imaginary _nite region are the same as those of the original problem[ The second is a
homogeneous problem\ in which the _nite plate of matrix material is subjected to the loadings[
The loadings consist of the same external loading as in the original problem and the extra loadings
which are applied in order to counteract the tractions induced by microcrack interactions along
the boundary of the imaginary _nite region in the _rst problem[ Analysis is based on a superposition
scheme and series expansions of the complex potentials[ By using the traction!free conditions on
each crack surface and resultant force relations along the outer boundary\ a set of governing
equations are formulated[ The governing equations are solved numerically on the basis of a
boundary collocation procedure[ The e}ective Young|s moduli based on this method for randomly
distributed cracks and parallel cracks are evaluated for rectangular plated with microcracks[ The
numerical results are compared with those from various micromechanics models and experimental
data[

1[ Basic formulae and calculation method

1[0[ Basic formulae

1[0[0 A sin`le crack
It is well known that stresses and displacements for a homogeneous elastic body under plane

deformation can be represented by two complex potentials[ To be convenient for our purpose\
potentials F"z# and V"z# will be used[ Stresses can be derived from "Muskhelishvili\ 0842#
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sx¦sy � 1ðF"z#¦F"z#Ł

sy−isxy � F"z#¦V"z¹#¦"z−z¹#F?"z# "0#

A crack can be considered as a continuous distribution of in_nitesimal edge dislocation[ For a
single crack lying on the real axis between s � −a and s � a in an in_nite plate\ the complex
potentials F"z# and V"z# are given by the following formula]

F"z# � V"z# �
m

pi"k¦0# g
a

−a

`"s#
z−s

ds "1#

where `"s# is the dislocation density at point z � s on the crack surface[ For the plane strain
problem k � 2−3n\ for the plane stress problem k �"2−n#:"0¦n#[ m is the shear modulus and n

is Poisson|s ratio[
The dislocation density can be expressed as the following series]

m

i"k¦0#
`"s# � s

�

m�9

am

Tm"j#

z0−j1
"2#

where Tm"j# is Chebyshev polynomials of the _rst kind and j � s:a[
Then\ substituting eqn "2# into eqn "1#\ we obtain

F"z# � V"z# � s
�

m�9

am 0
z
a

−X z1

a1
−01

m

>X
z1

a1
−0 "3#

In derivation of eqn "3#\ the following formula is used\

0
p g

0

−0

"0−j1#−0:1Tm"j# dj

z−j
�"z−zz1−0#m:zz1−0\ m � 9\ 0\ 1\ [ [ [

Equation "3# has been independently proposed by Gross "0871# and Han and Wang "0885# from
di}erent points of view[

Substituting eqn "3# into eqn "0#\ the stress _eld at any point due to the crack can be expressed
as a series[ Especially the stress _eld on the crack surface can be expressed as

sy−isxy � F¦"s#¦V−"s# � −1 s
�

m�9

amUm−0"s:a# "4#

where Um"s:a# is Chebyshev polynomials of the second kind[
The unknown coe.cients am need to be determined[ Due to the closure condition at the crack

tips\ the following equation can be given

g
a

−a

`"s# ds �
ia"k¦0#

m
s
�

m�9

am g
0

−0

Tm"j# dj

z0−j1
� 9 "5#

According to the orthogonality of Chebyshev polynomials of the _rst kind\ it is easily shown that
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Fig[ 0[ A set of arbitrary cracks[

a9 � 9 "6#

1[0[1[ A set of arbitrary cracks
A system containing a set of arbitrary 1!D of N cracks in an in_nite plate is shown in Fig[ 0[ A

global Cartesian coordinate system Oxy is situated[ A local normal!tangential coordinate system
employed with origin "Ok# at the center of the k!th crack is represented by xk and yk[ The geometry
of the k!th crack is speci_ed by the center coordinates "x"k#

c \ y"k#
c #\ orientation angle uk\ and the half

length of the crack ak[
The stresses produced by the k!th crack in the local coordinate system Okxkyk take the form

sxk¦syk � 1ðFk"zk#¦Fk"zk#Ł

syk−isxyk � Fk"zk#¦Vk"zk#¦"zk−zk#F?k"zk# "7#

where

Fk"zk# � Vk"zk# � s
�

m�9

akm 0
zk

ak

−X z1
k

a1
k

−01
m

>X
z1

k

a1
k

−0

zk � xk¦iyk �"z−Ck# e−iuk

z � x¦iy\ Ck � x"k#
c ¦iy"k#

c

and on the k!th crack surface

s"k#
yk "xk#−is"k#

xyk"xk# � F¦"xk#¦V−"xk# � −1 s
�

m�9

akmUm−0"xk:ak# "8#

According to the formulae of coordinate system transformation\ the tractions along the l!th
crack surface in local coordinate system Olxlyl produced by the k!th crack can be written as follows
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s"k#
yl "zl#−is"k#

xyl"zl# � 0
1
ðsxk"zk#¦syk"zk#Ł"0−e−1iu#¦ðsyk"zk#−isxyz"zk#Ł e−1iu

k � 0\ 1\ [ [ [ \ N "09#

where

u � ul−uk\ zk �"Cl−Ck# e−iuk¦zl ei"ul−uk#

1[1[ Solution for rectan`ular plate under tension

As mentioned in Section 0\ the problem of a _nite plate with microcracks can be decomposed
into two subproblems[ The _rst subproblem is microcrack interactions within an imaginary _nite
region in an in_nite plate and no stress is applied at in_nity[ The con_gurations of microcracks
and the opening displacement of each microcrack inside the imaginary _nite region are the same
as that of the original problem[ The second is a homogeneous problem in which the homogeneous
_nite plate of matrix material is subjected to the loadings[ The loadings consist of the same external
loading as in the original problem and the extra loadings which are applied in order to counteract
the tractions induced by microcrack interactions along the boundary of the imaginary _nite region
in the _rst problem and satisfy the outer boundary condition of the _nite plate[ The basic formulae
in the _rst subproblem have been derived in Section 1[0[ In the second subproblem\ the stresses
caused by the loads applied at the outer boundary can be expressed by two complex potentials
F9"z# and V9"z#]

s"9#
x ¦s"9#

y � 1ðF9"z#¦F9"z#Ł

s"9#
y −is"9#

xy � F9"z#¦V9"z¹#¦"z−z¹#F?9"z# "00#

where

F9"z# � s
�

n�0

nbnz
n−0\ V9"z# � s

�

n�0

ncnz
n−0

According to the superposition scheme\ the traction!free condition on each crack surface can be
written as follows

s"9#
yl "xl#−is"9#

xyl "xl#¦ s
N

k�0

ðs"k#
yl "xl#−is"k#

xyl"xl#Ł � 9\ =xl = ³ al\ l � 0\ 1\ [ [ [ \ N "01#

where s"k#
yl "xl#−is"k#

xyl"xl# are the tractions along the l!th microcrack surface in local coordinate
system Olxlyl produced by the k!th microcrack in the _rst subproblem[ s"9#

yl "xl#−is"9#
xyl "xl# are the

tractions along the l!th microcrack surface in local coordinate system Olxlyl produced by the
loadings applied to the outer boundary of the _nite plate in the second subproblem[

Consider a rectangular plate with microcracks which is subjected to external uniaxial tension
"Fig[ 1#[ Point A is assumed to be _xed at all times\ a point A� is permitted to move[ The boundary
conditions in the present analysis are written in terms of resultant forces from A to A� as follows]

A� $ AB] X¦iY � 9

A� $ BC] X¦iY � s9i"W−x#
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Fig[ 1[ Tension of rectangular plate with microcracks[

A� $ CD] X¦iY � 1s9iW

A� $ DA] X¦iY � s9i"W−x# "02#

In the global coordinate system\ the resultant forces from A to A� can be expressed

X"z#¦iY"z# � X9"z#¦iY9"z#¦ s
N

k�0

"Xk"zk#¦iYk"zk## eiuk

� −iðf9"z#¦v9"z¹#¦"z−z¹#F9"z#ŁA�
A

− s
N

k�0

i"ðfk"zk#¦vk"zk#¦"zk−zk#Fk"zk#Ł eiuk#A�
A "03#

where

f9"z# � s
�

n�9\0

bnz
n\ v9"z# � s

�

n�9\0

cnz
n

fk"zk# � vk"zk# � − s
�

m�0

ak

m
akm 0

zk

ak

−X z1
k

a1
k

−01
m

Equations "01# and "02# are the governing equations for determining the unknown coe.cients
akm "k � 0\ 1\ [ [ [ \ N^ m � 0\ 1\ [ [ [ \ �#\ bn "n � 9\ 0\ [ [ [ \ �# and cn "n � 9\ 0\ [ [ [ \ �#[
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It is di.cult to solve the governing equations analytically[ The governing equations can be
reduced to a system of linear algebraic equations for the unknown coe.cients based on the
boundary collocation method on crack surfaces and the outer boundary of the rectangular plate[
By means of dividing the k!th crack surface into Mk elements\ the collocation points on the k!th
crack surface are given by the following expression

xki � ak cos 0
ip

Mk¦01\ i � 0\ 1\ [ [ [ \ Mk

The i!th outer edge of the rectangular plate is divided regularly into Ni "i � 0\ 1\ 2\ 3# segments by
selecting the boundary stations Qj"zj# " j � 0\ 1\ [ [ [ \ NB#\ where NB � S3

i�0 Ni\ Q0\ Q1 and QNB are
taken as shown in Fig[ 1[

When the algebraic equations are solved\ the complex potentials and the stress components
produced by each crack and the loadings applied to the outer edges are known[ According to the
superposition principle\ the stress _elds of the rectangular plate are obtained with the aid of the
transformation formulas from the local coordinate systems into the global one[

2[ SIFs and the effective elastic moduli

The stress intensity factors are related to stresses on the prolongation of the microcracks by

k2
0l−ik2

1l � lim
xl:2al

zpX x1
k−a1

l

al

ðsyl"xl#−isxyl"xl#Ł =xl = × al\ "l � 0\ 1\ [ [ [ \ N# "04#

and they can be further expressed as

k2
0l−ik2

1l � 21zpal s
m

almTm"20#\ l � 0\ 1\ [ [ [ \ N "05#

Here the quantities with upper and lower signs refer to the right! and left!hand microcrack tips\
respectively[

According to the work by Kachanov "0881#\ for ~at cracks in 1!D\ the average strains can be
expressed]

ðoŁ � M9] ðsŁ¦
0

1A
s
l

"ðbŁn¦nðbŁ#lal

� "M9¦DM#] ðsŁ � M] ðsŁ "06#

where M9 is the compliance tensor of the matrix material^ ðsŁ is the average stress\ which is equal
to the stresses imposed on the rectangular plate^ and M is the e}ective compliance^ A is the area
of the rectangular plate^ the superscript "l# denotes the l!th microcrack in the plate^ the summation
is over all microcrack^ al is the half length of the i!th crack[ "ðbŁn#l\ "nðbŁ#l denote dyadic "tensor#
products of the displacement discontinuity vector b"l# � u"l#¦−u"l#− "crack opening displacement\
COD# and unit normal n"l# to the l!th crack[ The average COD of the l!th crack can be calculated
by the following formulae]
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Fig[ 2[ Two collinear cracks under uniform tension[

ðbŁl �
0

1al g
al

−al

bl dxl �
alp"k¦0#

3m
al0i "07#

For the uniaxial tension case "Fig[ 1#\ we can obtain the e}ective compliance M11\ then the
e}ective moduli can be calculated E1 � 0:M11[

3[ Numerical examples

3[0[ Two or several cracks in an in_nite plate

As a _rst example\ consider an in_nite plate containing two collinear cracks\ as shown in Fig[
2\ under remote tension loading[ In order to check the accuracy and convergency of the present
method\ the stress intensity factors are calculated for increasing numbers of collocation points
along the crack surface Mk[ The normalized stress intensity factors are given in Table 0\ along with
the analytical exact results "Murakami\ 0876#[ Table 0 shows that the numerical convergency of
the present method is excellent and the accuracy is very high[ The six digits accuracy can be
obtained with six or eight collocation points when the distance between two crack tips is large^
more collocation points are needed in order to obtain higher accuracy as crack spaces are closer[
When 1a:b is 9[3 and the number of collocation points is eight\ the di}erences of the tractions
between the present results and the analytic solutions are less than 09−04s at the collocation points
on the crack surface\ and those at the middle points between neighboring collocation points are
less than 09−7s[

For an in_nite row of collinear cracks with the same length "as show in Fig[ 3# under remote
tension loading\ the normalized stress intensity factors are shown in Table 1\ which coincide with
the literature "Murakami\ 0876#[

Numerical tests have shown that the accuracy and the e.ciency of the present method are very
high\ indicating that this method could be used as a tool to study the damage problems of brittle
materials which are weakened by many cracks[
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Table 0
Normalized stress intensity factors KI:szpa for geometry of Fig[ 2

1a:b Mk Outside Inside

Present Exact� Present Exact�

9[09 3 0[990085 0[99019 0[990211 0[99021
5 0[990085 0[990211

9[19 3 0[993513 0[99351 0[994559 0[99455
5 0[993513 0[994559

9[29 3 0[909055 0[90906 0[902717 0[90272
5 0[909056 0[902720
7 0[909056 0[902720

9[39 3 0[906746 0[90676 0[916042 0[91606
5 0[906756 0[916069
7 0[906756 0[916069

9[49 5 0[916841 0[91684 0[936847 0[93685
7 0[916842 0[936859

09 0[916842 0[936859
9[59 7 0[939825 0[93983 0[979392 0[97939

09 0[939826 0[979393
01 0[939826 0[979393

9[69 7 0[946750 0[94675 0[022142 0[02215
09 0[946753 0[022151
01 0[946753 0[022151

9[79 01 0[970955 0[97096 0[117822 0[11783
03 0[970956 0[117824
05 0[970956 0[117824

9[89 01 0[006283 0[00630 0[342698 0[34276
05 0[006300 0[342748
19 0[006300 0[342758

� See Murakami "0876#[

Fig[ 3[ An in_nite row of parallel cracks[
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Table 1
Normalized stress intensity factors KI:szpa for geometry of Fig[ 3

1a:b Present Isida� 1a:b Present Isida�

9[0 0[993036 0[99304 9[4 0[017268 0[01727
9[1 0[905870 0[90587 9[5 0[197357 0[19736
9[2 0[928721 0[92872 9[6 0[225996 0[22590
9[3 0[964216 0[96422 9[7 0[453862 0[45386

� See Murakami "0876#[

Fig[ 4[ Uniform tension of center cracked rectangular plate[

3[1[ Uniform tension of center cracked rectan`ular plate

A rectangular plate with a center crack is subjected to uniform tension as shown in Fig[ 4[ The
number of collocation points on the crack surface is eight\ and the number of collocation points
of outer boundary is 59"NB � 59#[ The normalized stress intensity factors are given in Table 2\
which are in good agreement with Isida|s solutions "Murakami\ 0876#[ When a:W is 9[3\ the
normal stresses along BC are shown in Fig[ 5\ and the absolute values of the shear stresses along
AB and BC are less than 09−2s9[The results show the present method is e.cient for solving the
crack problem of a _nite solid[
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Table 2
Normalized stress intensity factors KI:s9zpa for geometry of Fig[ 4 "a � a:W\ b � H:W � 0#

a 9 9[0 9[1 9[2 9[3 9[4 9[5 9[6

Present 0[999 0[9039 0[9442 0[0121 0[1051 0[2231 0[3732 0[574
Isida� 0[999 0[903 0[944 0[012 0[105 0[223 0[370 0[57

� See Murakami "0876#[

Fig[ 5[ The normalized normal stresses along BC "a:W � 9[3#[

3[2[ Uniform tension of rectan`ular plate with microcracks

In the present work\ crack density is the parameter that characterizes the e}ect of microcracking[
Following Budiansky and O|Connell "0865#\ the crack density is de_ned for a microcracked solid
"1!D# as

r �
0
A

s
N

i�0

a1
i "08#

where N is the number of microcracks\ ai is the half length of the i!th microcrack[ The Poisson|s
ratio of the matrix material is 9[2[ The present study is limited to plane stress analysis[

First\ we calculate the e}ective Young|s moduli of a square plate containing randomly oriented
cracks and parallel cracks[ Thirty!six microcracks with the same length are generated in the square
plate and the number of cracks is _xed[ The rectangular plate is divided uniformly into meshes in
order for each mesh to contain one microcrack[ Locations and orientations of microcracks are
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Fig[ 6[ Randomly oriented cracks[

Fig[ 7[ Parallel cracks[

randomly generated in each mesh " for parallel cracks\ microcracks are randomly generated in
locations\ but are parallel to the x direction# "Figs 6 and 7#[ For each orientation statistics\ six
crack densities are assumed] p � 9[09^ 9[04^ 9[19^ 9[14^ 9[29^ 9[24[ Fifteen sample arrays are
considered for each density[ The crack densities are increased by increasing the length of all cracks
and maintaining the same random number for each particular crack distribution[ In the course of
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Fig[ 8[ Normalized e}ective Young|s moduli E1:E9 vs crack density r "randomly oriented cracks\ N � 25#[

generation\ they are regenerated if there is an intersection among cracks or an intersection between
microcracks and the boundary[ The e}ective Young|s moduli are calculated for each crack distri!
bution\

For randomly oriented cracks\ the e}ective Young|s moduli are shown in Fig[ 8\ along with the
solutions of other micromechanics models and the experimental data "Vavakin and Salganik\
0864#[ For parallel cracks\ the e}ective Young|s moduli are presented in Fig[ 09[ As shown in these
_gures\ the results are scattered from one sample to another[ For randomly oriented cracks\ the
mean of the moduli is close to the solution from the di}erential method\ which agrees well with
the results of Huang et al[ "0885#\ Fond and Berthaud "0884# and Renaud et al[ "0885#[ The present
results are in agreement with the experimental data "Vavakin and Salganik\ 0864#[ For parallel
cracks\ the range of variation in the moduli is below that for the dilute or non!interacting solution
and above that for the di}erential solution\ which coincides with Huang|s results "Huang et al[\
0885#[ In addition\ the e}ective moduli are computed within the representative volume element
"RVE# in an in_nite matrix based on the present method for randomly distributed cracks and
parallel cracks[ The average stresses and strains in the RVE are calculated by means of Kachanov|s
method "see e[g[ Kachanov\ 0881\ 0883#[ The results showed good agreement with Kachanov|s
results "see e[g[ Kachanov\ 0881\ 0883#[ For randomly distributed cracks\ the approximation of
non!interacting cracks provides surprisingly good results\ indicating the cancellation of microcrack
shielding and amplifying in the RVE in an in_nite media[ Further\ the e}ective moduli of the
square plate with multiple microcracks\ obtained by using the present method\ are compared with
the results of Kachanov "0881\ 0883# based on the RVE in an in_nite matrix in Figs 00 and 01[
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Fig[ 09[ Normalized e}ective Young|s moduli E1:E9 vs crack density r "parallel cracks\ N � 25#[

Fig[ 00[ Normalized e}ective Young|s moduli E1:E9 vs crack density r "randomly oriented cracks#[
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Fig[ 01[ Normalized e}ective Young|s moduli E1:E9 vs crack density r "parallel cracks#[

Fig[ 02[ Normalized e}ective Young|s moduli E1:E9 vs crack density r "randomly oriented cracks\ N � 5#[
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Fig[ 03[ Normalized e}ective Young|s moduli E1:E9 vs crack density r "randomly oriented cracks\ N � 19#[

From the comparison of the results\ it can be found that our results are below those from
Kachanov|s method which indicates that the presence of outer boundaries increases the loss of
sti}ness[

In order to compare the solutions of the present method with the experimental results "Carvalho
and Labuz\ 0885#\ the e}ective Young|s moduli are also calculated for the specimens[ The ratio
W:H of the specimen is 9[816[ The technique of random number generation is used to generate
the locations and orientations of microcracks which is the same as the one used earlier in this
paper[ Ten crack arrays are generated for each crack density of the specimen^ one of the plates has
six microcracks and the other has 19[ The e}ective Young|s moduli for each array are calculated[
Figures 02 and 03 show the results of the present method for rectangular plates which had six and
19 microcracks\ respectively[ The results show the same range of the e}ective Young|s moduli for
two groups plates with microcracks and are in good agreement with the experimental results
"Carvalho and Lauz\ 0885#[

4[ Conclusion

A general method for solving the plane elasticity problem of _nite plates with multiple micro!
cracks has been presented[ Numerical results show that the present method is accurate and e.cient
for evaluating the SIFs and the e}ective Young|s moduli[ When calculating the e}ective moduli
of plates containing random cracks\ the crack distribution are obtained by dividing the plates into
meshes and placing one crack randomly inside each mesh[ The calculated results agree well with
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the experimental data "Vavakin and Salganik\ 0864^ Carvalho and Labuz\ 0885# and Huang|s
numerical results which were obtained by using the completely random crack locations "with the
only restriction of non!intersecting cracks#\ indicating that the e}ect of the random number
generator on the e}ective elastic moduli is slight[ For randomly oriented cracks\ the mean of the
moduli is close to the solution from the di}erential method^ for parallel cracks\ the range of
variations in the moduli is below that for the dilute or non!interacting solution and above that for
the di}erential solution[
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